На правах рукописи

Морозов Евгений Александрович

АЛГОРИТМЫ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ХЛОРОФИЛЛА-А И ОБЩЕЙ ВЗВЕСИ И ИДЕНТИФИКАЦИИ МИКРОВОДОРОСЛЕЙ *LEPIDODINIUM CHLOROPHORUM* И *EMILIANIA HUXLEYI* ПО СПУТНИКОВЫМ ДАННЫМ НА ПРИМЕРЕ БИСКАЙСКОГО ЗАЛИВА

Специальность: 25.00.28 – океанология

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Санкт-Петербург 2013

Работа выполнена в Научном фонде "Международный центр по окружающей среде и дистанционному зондированию имени Нансена" и федеральном государственном бюджетном образовательном учреждении высшего профессионального образования "Российский государственный гидрометеорологический университет"

Научные руководители:	доктор физико-математических наук, проф. Поздняков Дмитрий Викторович				
	кандидат физико-математических наук, проф. Сычёв Виталий Иванович				
Официальные оппоненты:	доктор физико-математических наук, проф. Кудрявцев Владимир Николаевич				
	кандидат географических наук, доц. Шилов Игорь Олегович				
Ведущая организация:	Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) (СПбГЭТУ)				

Защита состоится 06 июня 2013 г. в 12:00 на заседании диссертационного совета Д 212.197.02 Российском при государственном гидрометеорологическом университете по адресу: 195196, Россия, Санкт-Петербург, Малоохтинский проспект, д. 98.

С диссертацией можно ознакомиться в научной библиотеке Российского государственного гидрометеорологического университета (РГГМУ).

Автореферат разослан 4 мая 2013 г.

Ученый секретарь диссертационного совета кандидат географических наук,

Вания. проф. В. Н. Воробьев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность.

Бискайский залив (БЗ) является важным природным объектом: прибрежная зона имеет высокую плотность населения и здесь располагаются разнообразные промышленные предприятия и активно ведётся сельское хозяйство (Treguer, 1979; 2000; ICES, 2008; ICES, 2010; OSPAR Commission, 2000).

Фитопланктон — один из важнейших индикаторов состояния экосистемы. По изменениям динамики этого первичного продуцента можно судить о состоянии экосистемы в целом, прежде всего, имея в виду её трофический статус.

С возрастанием общей антропогенной нагрузки на БЗ усиливается влияние на трофический статус этой акватории и светового климата в водном столбе. Продуцирование микроводорослями, как фототрофными растительными организмами, регулируется в значительной степени доступностью световой энергии в водном столбе. В прибрежных водах важным регулятором светового режима является взвесь. В основном терригенного происхождения. Следовательно, для более полного понимания процессов, происходящих в водной экосистеме на её нижнем трофическом уровне, необходимо уметь оценивать и содержание терригенной взвеси, и её влияние на перенос солнечного изучения в водном столбе.

К этому следует добавить, что в последние годы всё большее внимание начинают привлекать и учащающиеся случаи массового развития <u>вредоносных</u> видов водорослей, как в прибрежной, так и в пелагиальной части БЗ (*Lepidodinium chlorophorum* и *Emiliania huxleyi*, соответственно).

Таким образом, слежение за экологическим состоянием прибрежной зоны и его изменением представляет интерес с многих точек зрения.

До настоящего времени отсутствовали достаточно точные методы и биооптические алгоритмы, которые позволили бы, по возможности, комплексно исследовать со спутников указанную совокупность проблем экосистемы БЗ на низшем трофическом уровне.

В свете сказанного выше разработка и реализация такого рода алгоритмов представляется чрезвычайно своевременной задачей.

В силу сложнейших связей гидро-биологическими между И геофизическими процессами, на повестку ДНЯ выдвинута задача синергетического использования спутниковой информации В разных спектральных интервалах.

Наконец, характерные для региона БЗ сложные метеорологические условия, частая облачность в зимний период, а также сложная по своей природе динамика био-геохимиических процессов в БЗ и необходимость использования протяжённых рядов данных выдвигают задачу совмещения спутниковых данных аналогичного предназначения.

В данной диссертационной работе мы постарались как можно более полно решить упомянутые выше задачи.

Цель исследования: Создание биооптических алгоритмов, позволяющих выявить характерные особенности состояния и динамики экосистемы БЗ на низшем уровне её трофической структуры и их связи с внутриводными и гидрометеорологическими процессами.

При этом решались следующие задачи:

).

1 Разработка алгоритма определения концентраций хлорофилла-а (*XЛ*) и общей взвеси (*OB*) в шельфовой зоне БЗ по данным спутниковых датчиков SeaWiFS и MODIS с использованием репрезентативной базы данных измерений *in situ*.

- 2 Разработка методики объединения данных по концентрациям *ХЛ* и *ОВ*, полученных со спутниковых датчиков SeaWiFS и MODIS.
- 3 Исследование эффективности объединения данных датчиков SeaWiFS и MODIS для увеличения покрытия акватории БЗ данными (в периоды с интенсивным облачным покровом).
- 4 Увеличение продолжительности ряда данных по пространственновременным вариациям концентраций *ХЛ* и *OB* в БЗ за счёт объединения (bridging) данных с датчиков SeaWiFS и MODIS в единый временной ряд.
- 5 Разработка алгоритма идентификации цветений *L. chlorophorum* по данным датчика MODIS с использованием базы данных измерений *in situ*.
- 6 Исследование сезонной, межгодовой и пространственной динамики цветений *L. chlorophorum*.
- 7 Разработка алгоритма одновременного определения концентраций *ХЛ* и кокколитов кокколитофора *E. huxleyi*, а также *ХЛ* диатомовых в областях интенсивного цветения этого кокколитофора.
- 8 Разработка алгоритмов идентификации цветений кокколитофоров *E. huxleyi* по данным спутниковых датчиков CZCS, SeaWiFS и MODIS.
- 9 Разработка методики слияния данных спутниковых датчиков CZCS, AVHRR, SeaWiFS и MODIS по цветениям *E. huxleyi*.
- 10 Увеличение продолжительности длины ряда данных об интенсивных цветениях *E. huxleyi* за счёт объединения данных датчиков CZCS, AVHRR, SeaWiFS и MODIS.

Научная новизна.

- Разработаны наиболее точные на сегодняшний день алгоритмы восстановления концентраций *ХЛ* и *ОВ* в БЗ.
- Произведено объединение рядов данных по концентрациям *ХЛ* и *ОВ* в шельфовой зоне БЗ. Впервые составлены объединённые продолжительные ряды данных концентраций *ХЛ* и *ОВ* по спутниковым наблюдениям.
- Впервые получен ряд данных частотности цветений кокколитофоров *E. huxleyi* в БЗ за 30-летний период.
- Впервые применена для вод БЗ методика идентификации цветений *E. huxleyi* по данным спутниковых датчиков AVHRR и CZCS.

- Впервые разработан и применён алгоритм определения присутствия и картирования ареала цветения водоросли *Lepidodinium chlorophorum* в прибрежных водах БЗ за период 2002-2008 гг.
- Впервые для БЗ численно оценена эффективность объединения данных датчиков SeaWiFS и MODIS в зимний период для повышения покрытия акватории данными в периоды с интенсивной облачностью.

Практическая значимость.

Показана перспективность / принципиальная возможность комплексного исследования параметров качества вод (ПКВ) конкретного водного объекта с гидрооптически сложным составом вод на основе разнообразной <u>исключительно</u> спутниковой информации.

Результаты могут быть использованы для:

- усовершенствования мониторинга экологического состояния вод БЗ, включая получение информации о биопродуктивности вод в шельфовой зоне и световом климате этой акватории;

- для мониторинга возникновения и динамики развития вредоносных цветений *Lepidodinium chlorophorum* в прибрежных водах БЗ;

- для мониторинга вредоносных цветений *Emiliania huxleyi* в открытой/пелагиальнной части БЗ;

- при идентификации вредоносных цветений водорослей также и в различных районах Мирового океана (в силу неспецифичности разработанных алгоритмов по отношению к типам природных вод).

Положения, выносимые на защиту.

1. Разработаны наиболее точные на настоящий момент алгоритмы для определения концентраций *ХЛ* и *ОВ* в шельфовых водах БЗ. Впервые:

2. Разработаны с применением нейронных сетей и нечёткой логики алгоритмы идентификации цветений водоросли *Lepidodinium chlorophorum* в прибрежных водах БЗ.

3. Разработан алгоритм одновременного определения концентрации кокколитов, *XЛ* кокколитофора *Emiliania huxleyi* и *XЛ* диатомовых водорослей в районах цветения *E. huxleyi* по данным датчиков SeaWiFS и MODIS.

4. Разработаны алгоритмы идентификации цветений кокколитофоров по данным датчиков SeaWiFS, MODIS, CZCS.

5. На количественном уровне показана оправданность / эффективность объединения данных SeaWiFS и MODIS с помощью взаимосовместимых алгоритмов для исследования пространственно-временной изменчивости ХЛ и ОВ в шельфовой зоне БЗ с применением разработанных алгоритмов. шельфовой Подтверждено, ЧТО по зоне пространственно-временная ОВ обусловлена изменчивость В распределениях ХЛ И В основном поступлением вещества с материковым стоком и периодическим влиянием ветрового перемешивания и апвеллингов.

Апробация работы. Результаты работы обсуждались на следующих конференциях:

VI Всероссийская открытая конференция "Современные проблемы исследования Земли из космоса", Институт космических исследований РАН, Россия, Москва (10-14 ноября 2008 г.); Международный симпозиум по атмосферной радиации и динамике – МСАРД-2009, Петергоф, С.-Петербург, Россия (22-26 июня 2009 г.); Седьмая Всероссийская открытая конференция "Современные проблемы дистанционного зондирования Земли из космоса", Москва, Россия (16-20 ноября 2009 г.); Осеапѕ from space symposium, Венеция, Италия(26-23 апреля 2010 г.); ESA Living planet symposium, Берген, Норвегия (28 июня – 2 июля 2010 г.); Bосьмая всероссийская открытая конференция "Современные проблемы дистанционного зондирования Земли из космоса", Москва, Россия (15-19 ноября 2010 г.); 64-я конференция профессоров, преподавателей и научных работников, Санкт-Петербургский государственный университет, Санкт-Петербург, Россия (25 января – 5 февраля 2011 г.).

Основные результаты работы использованы при подготовке курсов "обработка спутниковой информации" и "аэрокосмические методы" для студентов специальности океанология и магистров гидрометеорологов океанологического факультета РГГМУ.

Публикации. По теме работы опубликовано 14 печатных работ, из которых 5 – статьи в ведущих рецензируемых журналах по данной тематике. Некоторые из результатов работы использованы при написании книги "Monitoring of harmful algal blooms", Lasse H. Pettersson and Dmitry Pozdnyakov, Springer-Praxis, 2013.

Структура и объем диссертации. Работа состоит из введения, 5 глав и заключения. Общий объем диссертации составляет 225 страниц; содержит 79

иллюстраций, 9 таблиц. Список литературы включает 197 библиографических ссылок, из них 177 работ из зарубежных и международных изданий.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** обоснована актуальность темы, сформулированы цели и задачи работы, отражена научная новизна и значение результатов для науки и практики, а также сформулированы основные положения, выносимые на защиту.

В главе 1 рассматриваются современные пути решения обратной задачи ДЗ водной поверхности в видимом диапазоне спектра, описываются принципы построения алгоритмов её решения. Рассмотрены алгоритмы получения по спутниковым данным дополнительной информации: температуры поверхности океана (ТПО), скорости и направления ветра. Рассмотрены характеристики современных спутниковых датчиков видимого и ИК диапазонов, данные которых использовались в работе. приведены принципы построения алгоритмов обработки спутниковых данных о цвете вод и даны конкретные примеры наиболее распространённых из них.

В нашем случае решение прямой задачи сводится к нахождению спектральной зависимости подповерхностного коэффициента отражения для дистанционного зондирования в водной среде $R_{rsw}(\lambda, -0)$ от концентраций компонентов водной среды и их оптических свойств. Использование коэффициента $R_{rsw}(\lambda, -0)$ обусловлено тем, что он связан с определяемой по дистанционным данным яркостью водной поверхности $L_w(\lambda, +0, \theta_v, \varphi_v, \lambda)$ измеряемой со спутника:

$$R_{rsw} (-0, \lambda, \theta_0, \varphi) = T_{surf} L_w (+0, \theta_v, \varphi_v, \lambda) / E_d (+0, \lambda), \qquad (1)$$

где T_{surf} – фактор ослабления солнечного света при прохождении через раздел вода – воздух, $E_d(+0, \lambda)$ – освещенность водной поверхности, θ_0 – солнечный зенитный угол, φ – угол визирования водной поверхности спутниковым датчиком.

Подповерхностный коэффициент же отражения для дистанционного зондирования может быть параметризован через первичные гидрооптические характеристики, определяемые непосредственно компонентами морских вод. В частности для средних широт и для характерных для них высот Солнца и вертикального визирования эффективно следующее соотношение (Jerome и др. 1989):

$$R_{rsw} = -0,00036 + 0,110(b_b/a) - 0,0447(b_b/a)^2,$$
(2)

где $a = \sum_{i}^{I} C_{i} a_{i}^{*}$; $b_{b} = \sum_{i}^{I} C_{i} (b_{b}^{*})_{i}$, i = I, 2, ... *I*, где a_{i}^{*} , $(b_{b}^{*})_{i}$, – удельные, т.е. отнесенные к единице концентрации C_{i} , первичные гидрооптические характеристики (ПГХ).

В главе 2 приведена географическая характеристика БЗ. Описаны метеорологический и гидрологический, режимы, гидробиологические и гидрохимические свойства вод, охарактеризованы фитопланктон, общая взвесь и растворённое органическое вещество, а также оптические свойства вод БЗ.

В главе 3 описаны созданные нами алгоритмы обработки спутниковых данных.

В разделе 3.1 описана разработка гидрооптического алгоритма для восстановления концентраций *ХЛ и ОВ* в шельфовой зоне БЗ. Дана характеристика баз данных использованных для разработки алгоритмов.

Имея обширную базу синхронных и квази-синхронных со спутниковыми измерениями (СКС) данных *in situ*, включающую СКС данные со значениями из всего диапазона изменения параметров в БЗ, мы выбрали метод <u>нейронных</u> <u>сетей (HC)</u>.

В НС соседние слои соединены между собой: каждый нейрон в отдельном слое соединён связью (*i*) с каждым нейроном следующего слоя. Каждая связь имеет вес (*w*), и выходное значение *O* каждого нейрона рассчитывается в соответствии с выражением

$$O = f(-bias + \Sigma_i w_i x_i) \tag{3}$$

где *bias* – специфичное для каждого нейрона значение, w_i – вес связи, x_i – выходное значение, получаемое по связи от предыдущего слоя (у нейронов во входном слое есть только одна входная свя ь и x_i являются значениями выходного слоя), f – нелинейная сигмоидная функция, дающая на выходе возрастающие значения в диапазоне от 0 до 1 по мере того, как значение аргумента изменяется от -∞ до +∞:

$$f(x) = \frac{1}{1 + \exp(-\nu_j)} \tag{4}$$

S.

 $v_j -$

Алгоритм обучения представляет собой процедуру, осуществляющую последовательность действий для настройки весов.

Оптимальной для наших целей оказалась конфигурация сети с 6 нейронами во входном слое, 10 и 3 нейронами в первом и втором скрытых слоях и одним нейроном в выходном слое (см. рис. 1).

Для настройки сети, был создан тренировочный массив данных, состоящий из векторов концентраций $X\Pi$ и OB, измеренных *in situ* и соответствующих им спектров R_{rsw} .

В разделе 3.2 описана разработка биооптических алгоритмов для идентификации и оконтуривания областей цветений *L. chlorophorum*.

Исходя из анализа объёма и характера имевшейся в нашем распоряжении базы дистанционных данных и измерений *in situ*, для автоматической идентификации *L. chlorophorum* были выбраны два независимых подхода: <u>HC</u> и метод, основанный на <u>нечёткой кластеризации *c*-средних.</u>

Для обучения <u>HC алгоритма</u> идентификации *L. chlorophorum* использовался подход аналогичный описанному в разделе 3.1, но в качестве данных *in situ* использовались результаты наземных наблюдения именно за цветениями фитопланктона *L. chlorophorum*.

Исходной информацией для <u>нечёткой кластеризации основанной на с-</u> <u>средних</u> является матрица наблюдений **X**, каждая строчка которой представляет собой результат измерения *n* признаков одного из *M* объектов кластеризации. Задача кластеризации состоит в разбиении объектов из матрицы **X** на несколько подмножеств (кластеров), в которых объекты более схожи между собой, чем с объектами из других кластеров. В нашем случае использовалось разбиение на два подмножества: *L. chlorophorum* и не *L. chlorophorum*.

В разделе 3.3 описаны алгоритмы, с помощью которых производились исследования цветений кокколитофора E. huxleyi. В рамках алгоритма на основе Левенберга-Марквардта многомерной оптимизации определения для кокколитофоров и кокколитов по данным SeaWiFS и MODIS мы оперируем следующими величинами: $R_{rsw}(\lambda, C, a, b_b)$ – значение коэффициента отражения для дистанционного зондирования непосредственно под поверхностью воды на длине волны λ_i , рассчитанного по параметризации (1) для заданных значений вектора концентраций $C = (C_{x_{II}}, C_{MR}, C_{DOR})$ и спектральных значений суммарного поглощения a и рассеяния назад b_b в водном столбе, S_i – значение коэффициента отражения для дистанционного зондирования, измеренное дистанционным датчиком на длине волны λ_i , параметризации (2) для заданных значений вектора концентраций $C = (C_{xx}, C_{yos}, C_{pos})$ и спектральных значений суммарного поглощения a и рассеяния назад b_b в водном столбе.

Вектор концентрации C наиболее близкий к реальному его значению достигается при поиске абсолютного минимума функции невязки f(C):

$$f(C) = \sum_{j} g_{j}^{2}(C) , \qquad (5)$$

где *g_j* – величина невязки измеренного и рассчитанного коэффициентов отражения, которая может быть вычислена следующим способом:

$$g_j = [S_j - R_{rsw}(\lambda_j, \boldsymbol{C}, \boldsymbol{a}, \boldsymbol{b}_b)].$$
(6)

При поиске искомого вектора концентрации *С* используется следующая итерационная формула:

$$\boldsymbol{C}_{k+1} = \boldsymbol{C}_k + \lambda_k (F_k^{\ t} F_k + \mu_k D_k)^{-1} F_k R_{rsw}(\boldsymbol{C}_k), \qquad (7)$$

где k – номер шага итерации, $F_k = |\partial R_{rsw}/\partial C_k|$ – матрица $n \ x \ m$; F_k^{t} – транспонированная матрица F_k , D – диагональ матрицы $F_k^{t}F_k$, μ_k – направление минимизации, λ – длина шага оптимизации.

Метод многомерной оптимизации отыскивает минимум функции невязки для нескольких стартовых векторов концентраций C_{θ} . В качестве окончательного решения задачи принимается вектор концентраций C, который дает наименьшее из значений функции невязки.

Для исследования многолетней изменчивости цветений *E. huxleyi* с использованием всех доступных данных о цвете океана, был разработан

<u>алгоритм</u>, который может быть применим к данным <u>SeaWiFS</u>, <u>MODIS</u> и менее совершенного датчика <u>CZCS</u>.

Алгоритм основан на выявлении в спектре яркости восходящего излучения водной поверхности в областях цветения *E. huxleyi* характерных спектральных особенностей, с использованием которых была настроена система порогов по отношению к высоте и форме анализируемого спектра, что позволяет выделять пиксели с цветением этой водоросли.

Для получения коэффициента отражения для дистанционного зондирования, R_{rs} в спектральной области единственного канала видимого диапазона (580 нм – 680 нм) датчика <u>AVHRR</u> и выявления случаев цветения <u>E</u>. <u>huxleyi</u>, мы использовали процедуру атмосферной коррекции, предложенную в (Smyth *et al*, 2004). Ввиду невысокой энергетический чувствительности датчика AVHRR имелась возможность регистрировать только факт цветения водоросли *E. huxleyi*.

В главе 4 описана оценка точности разработанных нами алгоритмов восстановления ПКВ в БЗ.

В разделе 4.1 приведена оценка точности биооптических алгоритмов восстановления ПКВ: НС-алгоритмов (НСА) для восстановления концентраций *ХЛ* и *ОВ* в шельфовой зоне; НСА и алгоритма *с*-средних для идентификации *L*. *chlorophorum*.

При оценке по коэффициенту корреляции (r) и среднеквадратической ошибке (СКО), точность НС-алгоритма для $X\Pi$ характеризуется следующими значениями: r=0,79 (СКО = 3,17 мкг/л) и r=0,72 (СКО = 2,45 мкг/л) для СКС данных SeaWiFS и MODIS, соответственно (см. рис. 2 а, б).

Точность HC-алгоритма для восстановления концентраций *OB* характеризуется следующими значениями: r = 0,71 (СКО = 2,865 мг/л) для SeaWiFS и $r \sim 0,74$ (СКО = 2,877 мг/л) для MODIS (см. рис. 2 в, г).

0 высокой точности алгоритма говорит также сравнение среднеквадратической ошибки восстановления ПО спутниковым данным OB концентрации Л. И co отклонением среднеквадратическим coorestoc type Total Bx Three for a character of the site of the s reationDate:03/22/2010 16:23:23 reationDate:03/22/2010 16:23:24

12

концентрация XЛ HC, мкг/л

концентрация XЛ HC, мкг/л

Рисунок 2. Результаты сравнения восстановления концентраций *XЛ* алгоритмом HC для SeaWiFS (а) и MODIS (б) и концентраций *OB*, полученных алгоритмом HC для SeaWiFS (в) и MODIS (г), с измерениями *in situ*.

(см. рис. 3). В

заштрихованной части выявляются структуры, идентифицируемые HCалгоритмом, как и следовало ожидать, как область высоких концентраций *OB*, в действительности — это области скопления кокколитов *E. huxleyi* в местах цветения этой водоросли, имеющие оптические свойства, схожие с минеральной взвесью теригенного происхождения.

Таблица 1. Стандартное отклонение значений концентраций, полученных *in situ*. Среднеквадратическая ошибка восстановления этих значений по спутниковым данным HCA и коэффициент корреляции, *r* между значениями полученными *in situ* и восстановленными по спутниковым данным.

Параметр	Датчик	станд. откл. <i>in situ</i>	СКО	r
ХЛ	SeaWiFS	5,132 мкг/л	3,174 мкг/л	0,795
	MODIS	3,494 мкг/л	2,498 мкг/л	0,720
OB	SeaWiFS	4,049 м /	2,865 /	0,711
	MODIS	4,220 м /	2,877 /	0,744

Результаты дистанционной идентификации *L. chlorophorum* (с применением HC-алгоритма (HCA) и алгоритма нечёткой классификации *с*-средних (A*c*C)) проверены по данным *in situ*.

В качестве примера на рисунке 4 (а, б) приведены результаты идентификации и оконтуривания цветения *L. chlorophorum* в море Д'Ируаз. Применение НСА и AcC для обработки этого изображения однозначно выявляет (Рис. 4.6 б) наличие области цветения.

В разделе 4.2 описано совмещение данных разных датчиков цвета океана и выявление внутригодовой изменчивости ПКВ в шельфовой зоне БЗ. Исследован вопрос соотношения значений концентраций *ХЛ* и *OB*, восстанавливаемых в одном и том же пикселе по данным датчиков SeaWiFS и MODIS. Для этого были рассмотрены все доступные данные по БЗ за период их совместного функционирования (2002 – 2004 гг.) и выбраны случаи, для которых изображения SeaWiFS и MODIS получены с временным интервалом, не превышающим 2,5 часа.

Скатерограммы на рисунке 5 иллюстрируют расхождение между данными SeaWiFS и MODIS за 2003 год.

Был проанализирован набор статистических параметров (см. табл. 2), характеризующих совместимость значений *ХЛ* и *ОВ*, определённых в сов падающих по пространству и времени пикселях по данным SeaWiFS и MODIS.

Рисунок 3. Среднемесячные пространственные распределения *ХЛ* (а) и *OB* (б) полученные HC-алгоритмом, в шельфовой зоне БЗ (июнь 2004). Данные SeaWiFS.

Рисунок 4. Пространственное распределение *ХЛ* (а) и область цветения *L. chlorophorum* в море Д'Ируаз на 26.10.2006, выделенная с применением HCA (черная штриховка) и AcC (зелёная обасть) (б) к данным MODIS-Aqua.

Рисунок 5. Скатерограммы, иллюстрирующие соответствие между результатами восстановления концентраций *ХЛ* (а) и *OB* (б) по данным SeaWiFS и MODIS, использованным в данном исследовании. Цветовая шкала отражает значения десятичного логарифма числа пар данных в точке графика. Чёрная линия определяется уравнением линейной регрессии между данными SeaWiFS и MODIS.

Для каждого месяца были рассчитаны следующие статистические параметры: угловой коэффициент (S) и свободный член (I)

$$x_{MODIS} = I + S \cdot x_{SeaWiFS};$$

$$r = \frac{\sum \left[\overline{X}_{SeaWiFS} - \overline{X}_{SeaWiFS} \right] \left[\overline{X}_{MODIS} - \overline{X}_{MODIS} \right]}{\sqrt{\sum \left[\overline{X}_{SeaWiFS} - \overline{X}_{SeaWiFS} \right]^2 \sum \left[\overline{X}_{MODIS} - \overline{X}_{MODIS} \right]^2}} \right];$$

$$CAO = \frac{\sum \left[x_{SeaWiFS} - x_{MODIS} \right] \left[x_{SeaWiFS} - x_{MODIS} \right]}{r} \times 100 \right],$$

$$CKO = \exp \sqrt{\frac{\sum \left(\ln x_{SeaWiFS} - \ln x_{MODIS}\right)^2}{n}}$$
), $x - x$

,

2.

_

_

SeaWiFS MODIS

,

2003	.; <i>n</i> =
------	---------------

ХЛ								
Месяц	S	Ι	R	CAO,%	<i>СКО</i> , мкг/л	п		
Январь	0,59	0,26	0,82	7,66	1,63	760775		
Февраль	0,55	0,37	0,75	14,50	1,54	677390		
Март	0,68	0,37	0,79	26,19	1,53	1329593		
Апрель	0,51	0,57	0,69	24,11	1,58	1414780		
Май	0,75	0,35	0,79	45,83	1,68	975603		
Июнь	0,93	0,21	0,81	42,88	1,70	1185436		
Июль	0,85	0,25	0,82	86,38	1,98	1847563		
Август	0,63	0,27	0,81	70,00	1,88	1603839		
Сентябрь	0,76	0,21	0,85	47,60	1,70	2377051		
Октябрь	0,49	0,29	0,70	5,14	1,72	709337		
Ноябрь	0,43	0,25	0,67	-18,24	2,13	592768		
Декабрь	0,60	0,14	0,81	-9,15	1,82	346962		
Весь год	0.7	0.20	0.77	40.14	1.75	12021007		
	0,07	0,30	0,77	40,14	1,75	13821097		
Maagu	C	I						
Пирори		0.40	<u>л</u> 0.72	CAU, 70	CAO , M17J1	<i>n</i> 748020		
Лнварь	0,90	0,49	0,73	7,20	2,00	671800		
Февраль Морт	0,07	0,74	0,79	22,07	1,75	1226726		
	0,94	0,73	0,78	29,42	1,70	1320720		
Май	0,00	0,92	0,02	24,73	1,70	075469		
И	0,44	0,80	0,45	-2,00	2,03	9/3408		
ИЮНЬ	0,46	1,00	0,45	0,54	2,02	1185161		
Июль	0,60	0,19	0,56	-20,83	1,94	184/148		
Август	0,62	0,11	0,55	-26,86	1,98	1603795		
Сентябрь	0,91	0,04	0,68	-6,83	1,69	2376925		
Октябрь	0,84	0,08	0,70	-11,68	1,80	709214		
Ноябрь	0,99	0,14	0,81	-1,27	1,85	591365		
Декабрь	1,00	0,18	0,82	4,58	1.86	346011		
Весь год	0,94	0,09	0,71	-0,38	1,86	13796064		

.

•

В разделе 4.3 описано временное сопряжение данных разных датчиков цвета океана и выявление на этой основе межгодовой и многодекадной изменчивости ПКВ (см. рис. 6).

Рисунок 6. Два частично перекрывающихся временных ряда среднемесячных концентраций *XЛ* в мкг/л (*a*) и *OB* in мг/л (*б*), восстановленных с помощью HCалгоритма по данным SeaWiFS (1997-2004 гг) и MODIS (2002-2009 гг), осреднённым по всей шельфовой зоне БЗ.

С применением биооптического алгоритма оценки площади цветения кокколитофоров, отдельно была оценена площадь цветений в северной и центральной частях БЗ (пример для центральной части см. на рис. 7).

Рисунок 7. Момент возникновения и площадь цветения *E. huxleyi* в центральной части БЗ. Данные SeaWiFS и MODIS.

В главе 5 описано синергетическое совмещение данных о характеристиках природных вод с различных спутниковых датчиков для анализа выявленной изменчивости ПКВ.

В разделе 5.1 А) проанализирована внутригодовая изменчивость ПКВ в прибрежной зоне БЗ с использованием совмещённых данных SeaWiFS-MODIS по среднемесячным концентрациям *ХЛ* и *ОВ* в шельфовой зоне за период 1997-2009 гг. Б) С помощью алгоритма идентификации цветения вредоносной водоросли *L. chlorophorum* (рис. 8), проанализирована пространственновременная динамика этих цветений и возможные факторы, влияющие на развитие этих цветений.

В разделе 5.2 с применением соответствующих разработанных алгоритмов (глава 3) рассмотрена временная изменчивость цветений *E. huxleyi*. Основываясь на том, что известно об экологии *E. huxleyi* (Balch, 1991; Holligan *et al.*, 1993), для исследования межгодовой изменчивости в пелагиальной зоне

БЗ было рассмотрено влияние облачности, ТПО, силы приводного ветра, поверхностных течений и поступления клеток кокколитофоров из других районов Мирового океана на возникновение цветений в центральной части БЗ, а так:

Рисунок 9. Центральная часть БЗ, 2001 год: временной ряд значений облачности (черная линия), относительной площади цветения *E. huxleyi* (столбики с заливкой) и концентрации *XЛ* диатомовых водорослей (столбики со штриховкой).

Основные результаты и выводы

1. Разработан наиболее точный на данный момент оперативный алгоритм восстановления концентраций *ХЛ* фитопланктона и минеральной взвеси по космическим данным в видимом диапазоне электромагнитного спектра для сложных в гидрооптическом отношении вод БЗ.

2. Произведено объединение данных датчиков SeaWiFS и MODIS для составления и изучения временного ряда данных *ХЛ* и *ОВ* большой продолжительности (13 лет).

3. Разработаны оперативные высокоточные алгоритмы идентификации вредоносных цветений водорослей *L. chlorophorum* и *E. huxleyi*.

4. На основе объединения данных датчиков CZCS, AVHRR, SeaWiFS и MODIS воссоздан и изучен временной ряд данных по цветению *E. huxleyi* общей продолжительностью 30 лет.

Исследование БЗ с использованием разработанных алгоритмов показало эффективность их эффективность как перспективного инсрумента детального изучения внутриводных процессов, который обеспечивает объективную оценку параметров процессов протекающих в природных водах. Разработанные методики объединения данных с различных датчиков цвета вод позволили с одной стороны, получить ряды данных превосходящие по продолжительности время жизни одного датчика и расширить возможности анализа, а с другой, показали необходимость учёта особенностей различных датчиков даже при значительной схожести их характеристик. Такой подход комплексного анализа данных видимого диапазона с помощью набора алгоритмов восстановления различных параметров качества вод и спутниковых данных из других

диапазонов электро-магнитного спектра, позволил выявить особенности особенности временных вариаций развития фитопланктонного сообщества: это периоды с высокими (1998 – 2001) и низкими концентрациями *XЛ* и *OB* в 2002 – 2006 гг.) и случаи возникновения прибрежных апвеллингов в шельфовых водах БЗ, выявить различия в цветении микроводорослей *L. chlorophorum и E. huxleyi* в отдельных районах БЗ и временной сделать обоснованные предположения и факторах влияющих на частоту и момент возникновения этих цветений.

5. Благодаря разработанным методикам извлечения из спутниковых данных информации о внутриводных процессах установлены и интерпретированы закономерности а) пространственно-временной динамики развития фитопланктона, в том числе, вредоносной водоросли *L. chlorophorum* в шельфовой зоне БЗ и б) временной динамики цветения кокколитофора *E. huxleyi* в пелагиальной зоне БЗ.

Существенно, что разработанные алгоритмы и методики являются неспецифичными для конкретного региона и могут быть применены для многих районов Мирового океана.

Публикации в изданиях, рекомендованных ВАК:

- Morozov E. Space-borne study of seasonal, multi-year, and decadal phytoplankton dynamics in the Bay of Biscay / E. Morozov, D. Pozdnyakov, T. Smyth, V. Sychev, H. Grassl // International Journal of Remote Sensing. – 2013. – Vol. 34:4. – P. 1297–1331.
- Морозов Е.А. Автоматическое распознавание и оконтуривание областей цветения *Lepidodinium Chlorophorum* по данным сканирующей аппаратуры / Е.А. Морозов, О.В. Анискина, Д.В. Поздняков, Л.Х. Петтерссон, В.И. Сычёв, Х. Грассль // Исследование Земли из космоса. – 2011. – № 2. – С. 49-59.
- Morozov E. A new area-specific bio-optical algorithm for the Bay of Biscay and assessment of its potential for SeaWiFS and MODIS/Aqua data merging / E. Morozov, A. Korosov, D. Pozdnyakov, L. Pettersson, V. Sychev // Int. J. of Remote Sensing. – 2010. – Vol. 31: 24. – P. 6541 – 6565.
- 4) Морозов Е.А. Наблюдения из космоса многолетней пространственной динамики биохимических переменных в Бискайском заливе / Е.А. Морозов, Д.В. Поздняков, В.И. Сычёв // Учёные записки Российского

Государственного Гидрометеорологичесого Университета. – 2010. – № 14. – С. 147–161.

5) Коросов А.А. Идентификация и картирование ареалов цветения кокколитофоров в Бискайском заливе / Коросов А.А., Морозов Е.А., Поздняков Д.В., Петтерссон Л.Х., Грассль Х. // Исследование Земли из космоса. – 2009. – № 3. – С. 67–78.

Публикации в других научных изданиях:

- 6) Морозов Е. А. Исследование сезонной и межгодовой изменчивости био-геохимических процессов в Бискайском заливе по спутниковым данным / Е. А. Морозов, Д. В. Поздняков // 64-я конференция профессоров, преподавателей и научных работников, С-ПбГУ, Санкт-Петербург, Россия, 25 янв. – 5 февр. 2011.
- 7) Morozov E. MODIS reveals green dinoflagellate bloom in the English Channel and the Bay of Biscay: identification algorithm and spatio-temporal analyses of the phenomenon / E. Morozov, O. Aniskina, D. Pozdnyakov, L. Pettersson, // Oceans From Space : Proceedings of symposium, Venice, Italy, 26-30 Apr. 2010. – P. 175-176.
- Pozdnyakov, D. Observations of multi-year spatial dynamics of biochemical variables in the Bay of Biscay from space / Pozdnyakov, D., Morozov, Eu., Pettersson, L., Sychev, V., // ESA Living Planet Symposium : Proceedings, Bergen, Norway, 28 June – 2 July 2010.
- 9) Морозов Е.А. Наблюдения по данным датчиков цвета океана многолетних и сезонных изменений некоторых показателей состояния экосистемы Бискайского залива / Е.А. Морозов, Д.В. Поздняков, А.А. Коросов, В.И. Сычёв // Современные проблемы дистанционного зондирования Земли из космоса : докл. Всероссийск. конф., Москва, Россия, 15 – 19 ноя. 2010. – С. 206-207.
- Pozdnyakov D. Seasonal dynamics of the phenomenon of massive coccolithophore blooms across the Bay of Biscay as revealed from space / D. Pozdnyakov, A. Korosov, E. Morozov, L. Pettersson // ISRSE-33 : Proceedings, Italy, Stresa, 4 8 May 2009.
- Морозов Е. О совместимости данных датчиков SeaWiFS, MODIS и MERIS по водам типа 2 на примере Бискайского залива / Е. Морозов, А. Коросов, Д. Поздняков, В. Сычёв // Современные проблемы дистанционного

зондирования Земли из космоса : докл. Всероссийск. конф., Москва, Россия, 16 – 20 ноя. 2009.

- 12) Морозов Е. К вопросу о совместимости данных SeaWIFS, MODIS и MERIS о цвете океана на примере акватории Бискайского залива / Е. Морозов, А. Коросов, Д. Поздняков // Международный симпозиум по атмосферной радиации и динамике (МСАРД-2009) : тез. докл., С.-Петербург- Петергоф, Россия, 22 – 26 июня, 2009.
- 13) Морозов Е.А., Восстановление параметров качества воды в Бискайском заливе с использованием различных гидрооптических моделей / Морозов Е.А., Коросов А.А., Поздняков Д.В. // Современные проблемы дистанционного зондирования Земли из космоса : докл. Всероссийск. конф., Москва, Россия, 10 – 14 ноя. 2008.
- 14) Коросов А.А. Применение нейронных сетей для обработки данных датчиков SeaWiFS и MODIS по Бискайскому заливу / А.А. Коросов, Е.А. Морозов, Д.В. Поздняков // Современные проблемы дистанционного зондирования Земли из космоса : докл. Всероссийск. конф., Москва, Россия, 10 – 14 ноя. 2008.